
Which Languages Have 4-Round Fully Black-Box
Zero-Knowledge Arguments from One-Way Functions?

Carmit Hazay1, Rafael Pass2, and Muthuramakrishnan
Venkitasubramaniam3

1 Bar-Ilan University
2 Cornell Tech

3 University of Rochester

Abstract. We prove that if a language L has a 4-round fully black-box zero-
knowledge argument with negligible soundness based on one-way functions, then
L ∈ MA. Since coNP ⊆ MA implies that the polynomial hierarchy collapses,
our result implies that NP-complete languages are unlikely to have 4-round fully
black-box zero-knowledge arguments based on one-way functions. In TCC 2018,
Hazay and Venkitasubramaniam, and Khurana, Ostrovsky, and Srinivasan demon-
strated 4-round fully black-box zero-knowledge arguments for all languages in
NP based on injective one-way functions. Their results also imply a 5-round pro-
tocol based on one-way functions. In essence, our result resolves the round com-
plexity of fully black-box zero-knowledge arguments based on one-way func-
tions.

Keywords: One-Way Functions, Zero-Knowledge Arguments, Black-Box Constructions

1 Introduction

Zero-knowledge (ZK) interactive proofs [11] are paradoxical constructs that allow one
player (called the prover) to convince another player (called the verifier) of the valid-
ity of a mathematical statement x ∈ L, while providing zero additional knowledge
to the verifier. Security against a cheating prover is formalized via soundness, which
bounds its success probability to convince of the truthfulness of an incorrect statement.
Whereas the zero-knowledge property is formalized by requiring that the view of ev-
ery “efficient” adversary verifier V∗ interacting with the honest prover P be simulated
by an “efficient” machine S (a.k.a. the simulator). The idea behind this definition is
that whatever V∗ might have learned from interacting with P , it could have actually
learned by itself (by running the simulator S). As “efficient” adversaries are typically
modeled as probabilistic polynomial-time machines (PPT), the traditional definition of
ZK models both the verifier and the simulator as PPT machines.

Several different flavors of ZK systems have been studied in the literature. In this
work, we are interested in computational ZK argument systems with black-box simu-
lation, where the soundness is required to hold only against non-uniform PPT provers
whereas the zero-knowledge property holds against PPT verifiers which get an auxil-
iary input. Such systems are referred to as computational zero-knowledge argument sys-

tems. We will further focus on the case of fully black-box constructions4 and black-box
simulation.5 The main question we are interested in this work is the round-complexity
of computational zero-knowledge argument systems based on minimal assumptions via
a fully black-box construction.

We begin with a survey of prior work in this area. Goldreich, Micali and Wigderson
[9] constructed the first zero-knowledge proof system for all of NP based on any com-
mitment scheme (which can be instantiated via a 2-round protocol based on one-way
functions [19,12]), where they required polynomially many rounds to achieve negligible
soundness. For arguments, Feige and Shamir [6] provided a 4-round zero-knowledge
system based on algebraic assumptions. In [3], Bellare, Jackobson and Yung, showed
how to achieve the same assuming only one-way functions.

In this work, we are interested in fully black-box constructions based on the un-
derlying assumptions. Pass and Wee [21] provided the first black-box construction of a
6-round zero-knowledge argument for NP based on one-way permutations,6 and seven
rounds based argument on one-way functions. Ishai, Mahmoody and Sahai provided the
first black-box zero-knowledge arguments based on collision-resistant hash-functions
that has total sublinear communication complexity [15]. Ostrovsky, Richelson and Sca-
furo [20] showed how to construct black-box two-party secure computation protocols
in four rounds where only one party receives the output, based on enhanced trapdoor
permutations. More recently, in two independent works by Hazay and Venkitasubrama-
niam [13] and Khurana, Ostrovsky and Srinivasan [17], 4-round fully black-box zero-
knowledge arguments based on injective one-way function were demonstrated for all of
NP.

On the negative side, Goldreich and Oren [10] demonstrated that three rounds are
necessary for designing zero-knowledge arguments for any non-trivial language (i.e.
outside BPP) against non-uniform verifiers. When further restricting to black-box sim-
ulation, Goldreich and Krawczyk [8] showed that four rounds are necessary for achiev-
ing zero-knowledge arguments of non-trivial languages. For the specific case of proofs,
Katz [16] showed that only languages in MA can have 4-round zero-knowledge proof
systems. As such, the works of [3] and [8] identify the round-complexity of zero-
knowledge arguments as four, when restricting to black-box simulation. The sequence
of prior works leaves the following fundamental question regarding zero-knowledge
arguments open:

What is the weakest hardness assumption for a fully black-box construction of
a 4-round zero-knowledge argument system for all of NP?
or
Is there an inherent black-box barrier to design 4-round ZK arguments for all
of NP based on one-way functions?

We remark that when considering non-black-box simulation, a recent work due
to Bitansky, Tauman Kalai and Paneth [5] demonstrated how to obtain 3-round zero-
knowledge arguments for NP based on multi-collision resistant hash functions. On the

4 Where the construction is agnostic of the specific implementation and relies only on its in-
put/output behavior.

5 Where the simulator is only allowed to make black-box use of the verifier’s code.
6 Where injective one-way functions are sufficient.

2

negative side, Fleischhacker, Goyal and Jain [7] proved that 3-round private-coin ZK
proofs for NP do not exist, even with respect to non-black-box simulation assuming the
existence of certain program obfuscation primitives.

Our results. In this work we prove the infeasibility of 4-round black-box ZK arguments
for all of NP from one-way functions. More formally, the main theorem we prove in
this work is:

Theorem 11 (Main result.) If L has a fully black-box construction of 4-round compu-
tational zero-knowledge argument for L with negligible soundness based on one-way
functions, then L ∈ MA.

We remark that our result is essentially optimal on several fronts. In particular, if
we relax the requirement of a black-box construction, then the work of [3] showed how
to construct 4-round ZK argument based on one-way functions. If we only required
inverse polynomial soundness (as opposed to negligible soundness), then the classic
GMW protocol [9] when repeated in parallel a logarithmic number of times gives a
4-round ZK proof based on one-way functions with inverse polynomial soundness. If
we relaxed one-way functions to injective one-way functions, then the works of [13,17]
demonstrates a 4-round zero-knowledge arguments for all of NP that is fully black-
box based on one-way permutations. We highlight here that our impossibility result
only requires that the zero-knowledge property holds w.r.t. one-way functions. In other
words, we can show L ∈ MA even if the soundness of the underlying argument is
based on one-way permutations. This matches the construction of [13]. Finally, we
cannot hope to improve the theorem from MA to BPP as there exist languages (that are
believed to be) outside of BPP (e.g., graph non-isomorphism) that have unconditional
4-round ZK proofs.

1.1 Our Techniques

On a high-level, our technique follows very closely the lower bound result of Katz [16].
In this work, Katz proves that if a language L has a 4-round black-box zero-knowledge
proof, then L ∈ MA. As a warmup, we begin with an overview of this proof.

Suppose that we have a 4-round zero-knowledge proof for a language L. The main
idea is to design a malicious verifier V∗ that satisfies the following properties:

– On a true statement x ∈ L, SV∗ will output an accepting transcript with high
probability, where S is the simulator for this argument system.

– On a false statement x 6∈ L, SV∗ outputs an accepting transcript with a small
probability.

Given such an algorithm V∗, one can consider the following procedure to decide
L: Run SV∗ . Then, reject if it outputs an accepting transcript and accept otherwise. If
this procedure can be carried out via a PPT algorithm then it would imply L ∈ BPP.
Since we know there are languages outside BPP which have 4-round zero-knowledge
proofs (e.g., languages in SZKP), it is unlikely that we will be able to construct a V∗ for
which this decision procedure will be efficiently computable. Indeed, the algorithm V∗

3

that is constructed in [16] cannot be sampled via a PPT algorithm. Recall that the goal
is to design an MA proof system for L. Katz shows that with some limited help from
an unbounded Merlin, Arthur will be able to run the decision procedure, namely SV∗ .
More concretely, Merlin will sample a string m from a prescribed distribution and send
it to Arthur. Using m, Arthur will be able to run SV∗ . On a true statement (i.e. x ∈ L),
Merlin will (honestly) provide the single message with the right distribution and Arthur
will be able to decide correctly. Soundness, on the other hand, will require to argue that,
for any arbitrary message sent by Merlin, Arthur rejects the statement with high proba-
bility. If the underlying zero-knowledge argument system admits perfect completeness
then it becomes easy to argue that Merlin cannot provide “bad” messages that will make
Arthur accept a false statement. The imperfect completeness case is more challenging.
To make the proof system sound in the case of imperfect completeness, Katz showed
a mechanism for Arthur to discard “bad” messages from Merlin. We now proceed to
describe in more detail the lower bound in the case of imperfect completeness as we
follow the ideas in this case closely.

We begin with a description of the malicious verifier V∗ and then give our MA
proof system. Roughly speaking, the malicious verifier V∗ generates the first message
according to the honest verifier V and will generate the third message depending on the
second message of the prover by randomly sampling a random tape consistent with its
first message. In more detail, we will consider V∗ that takes as an auxiliary input random
strings r1, . . . , rs under the promise that for every i, V(x; ri) generates the same first
message α. V∗ then sends α as the first message and upon receiving the second message
β from the prover, applies a pseudo-random function (a poly-wise independent hash-
function is sufficient) on β to obtain an index i ∈ [s]. Finally, V∗ uses ri to generate the
third message γ by running V with random tape ri and the partial transcript so far.

We will need a procedure to sample a uniform α that is in the support of the ver-
ifier’s first messages and then sample r1, . . . , rs uniformly over all consistent random
tapes. This procedure will not be PPT computable (as otherwise, it would imply SV∗

is efficiently computable and consequently L ∈ BPP). As we only need to design an
MA proof system, we will have Merlin (who is computationally unbounded) sample
r1, . . . , rs and send these to Arthur. Before we describe the MA proof system, we first
argue two properties:

1. If α is distributed according to the honest verifier algorithm with a uniform random
tape, and ri’s are uniformly sampled conditioned on α, then the marginal distri-
bution of any ri will be uniform. This implies that, for x ∈ L, if the ri’s were
sampled correctly then for any i, SV(x;ri) will output an accepting transcript with
high probability. We show below that by the zero-knowledge property of the proof
system, this implies that SV∗(x,r1,...,rs) outputs an accepting transcript with high
probability.

2. For x 6∈ L and ri’s sampled correctly, SV∗ does not output an accepting transcript
with high probability. This is argued by showing that if SV∗(x,r1,...,rs) outputs an
accepting transcript with high probability, then there exists a cheating prover P∗
that can break soundness on input x with non-negligible probability. The idea here
is, P∗ will emulate SV∗(x,r1,...,rs) internally and forward the outside execution in-
side in one of the rewinding sessions made by S. In more detail, upon receiving

4

the first message α from the verifier, P∗ first samples r1, . . . , rs that are consistent
with α as explained above. Next, it internally emulates SV∗(x,r1,...,rs), with the ex-
ception that it forwards the messages of a random rewinding session to an external
verifier. Now, if the chosen session is an accepting session then P∗ convinces the
external verifier to accept. Specifically, the analysis shows that P∗ will convince
the external verifier with probability at least µ/s where µ is the probability that
SV∗(x,r1,...,rs) outputs an accepting transcript.

Now consider the following MA proof system for L: Merlin samples a random first
message α for the honest verifier and then samples several consistent random tapes
r1 . . . , rs, and sends them to Arthur. Arthur will run SV∗(x,r1,...,rs). If S outputs an
accepting transcript, Arthur rejects and accepts otherwise. Completeness follows di-
rectly from Item 2, as Merlin will follow its actions honestly, making Arthur accept.
Soundness, as mentioned before, requires that r1 . . . , rs are generated with the right
distribution. If the underlying zero-knowledge protocol had perfect completeness, then
arguing soundness becomes easy because for any set of random tapes r1, . . . , rs sent
by Merlin, if they all are consistent with the same first message for the verifier, then
by perfect completeness we will have that SV∗ will output an accepting transcript with
high probability. We discuss the case of imperfect completeness as it is more relevant
to our techniques.

Handling imperfect completeness. If the original zero-knowledge system has imper-
fect completeness, then Merlin could select random tapes r1 . . . , rs that makes SV∗ not
output an accepting transcript, causing Arthur to accept.

To tackle this issue, as mentioned before, Katz introduces a procedure with which
Arthur checks whether the ri values are “good”. First, we observe that if these strings
were sampled correctly, then the marginal distribution of any of the ri’s will be uniform
(Item 1). This implies that when running the simulator with the honest verifier with
random tape ri on a true statement, the simulator is expected to output an accepting
transcript with high-probability.

Second, from the zero-knowledge property we have that for every set of random
tapes r1, . . . , rs:

{i← [t] : SV(x;ri)} ≈ {i← [t] : 〈P(x),V(x; ri)〉} and,

{SV
∗(x,r1,...,rs)} ≈ {〈P(x),V∗(x, r1, . . . , rs)〉}.

Since the Verifier chooses ri in its second round via pseudo-random function, we have
that:7

{i← [t] : 〈P(x),V(x; ri)〉} ≈ {〈P(x),V∗(x, r1, . . . , rs)〉

This implies that, for any message r1, . . . , rs received from Merlin, if SV(x;ri)
outputs an accepting transcript for a randomly chosen i with high-probability, then
SV∗(x,r1,...,rs) must output an accepting transcript with high-probability. This gives rise
to a checking procedure that can now be incorporated into the MA proof system. In
more detail, the MA proof system is modified by asking Arthur to first check if SV(x;ri)

7 In fact, the distibutions are identical if the verifier uses poly-wise independent hash-functions.

5

outputs an accepting transcript for a random i and reject otherwise. Only if the check
passes, namely SV(x;ri) outputs an accepting transcript, Arthur runs SV∗(x,r1,...,rs) and
decides accordingly. This gives an MA proof system that is sound. However, this modi-
fication alters the completeness of the proof system, as x 6∈ L could imply that SV(x;ri)
might not output an accepting transcript causing Arthur to reject immediately. This can
be fixed by having Arthur first check if the simulator outputs an accepting transcript
with the honest verifier on a uniformly sampled random tape by Arthur. More precisely,
the final MA proof system has Arthur perform the following:

1. Run SV(x;r) several times. If S fails to output an accepting transcript with high
probability where r is uniformly chosen in each trial, then accept and halt. Other-
wise, proceed to the next step.

2. Pick a random index i and run SV(x;ri). If S does not output an accepting transcript
then reject and halt. Otherwise, proceed to the next step.

3. Run SV∗(x,r1,...,rs). If S outputs an accepting transcript with high probability then
reject, otherwise accept.

Our Approach. We now discuss how we extend this lower bound to our setting where
we have a fully black-box construction of a 4-round zero-knowledge argument for L.
First, we observe that to consider the malicious verifier V∗ as in Katz’s proof, we need
to provide r1, . . . , rs consistent with the first message in the presence of a one-way
function oracle. Given an arbitrary oracle, we will not be able to sample randomness
r1, . . . , rs even in unbounded time, if we are only allowed to make polynomially many
queries to the oracle (which will be required as eventually, we want to use V∗ to break
soundness which is computational based on the one-wayness of the oracle). Instead,
we will prescribe a joint distribution over r1, . . . , rs and random oracles for which we
can carry out the proof. More precisely, given a statement x, we will specify a joint
distribution over random oracles O and r1, . . . , rs such that for all i, VO(x; ri) will
output the same message and the following two properties hold:

Property P1 On a true statement x, SO,V∗O(x,r1,...,rs) will output an accepting tran-
script with high probability, where S is the simulator for this argument system.

Property P2 On a false statement x, SO,V∗O(x,r1,...,rs) outputs an accepting transcript
with negligible probability.

Description of a malicious verifier strategy V∗. We now proceed to describe our ma-
licious verifier strategy and the corresponding random oracle distribution.

1. Run VO(x; r) where we emulate O as a random oracle and choose the verifier’s
random tape uniformly at random. Let α be the message output by V . Discard r
and the oracle O.

2. Consider the oracle PPT algorithmA• that on random tape (r, r′) outputs whatever
S•,V•(x;r)(x; r′) outputs. We will next rely on the “heavy-query” learning proce-
dure due to Barak and Mahmoody [2] who give a procedure to identify the most
frequent queries made by an algorithm to the random oracle conditioned on its

6

output being fixed to a particular message. We apply the heavy query learning pro-
cedure to the honest verifier algorithm V subject to the condition that it outputs α
as its first message. Let Q be the set of queries output by this procedure for some
oracle O′ sampled as a random oracle.

3. Let Rα be the set that contains all the pairs (r′,Q′) such that V(x; r′) outputs α
as its first message while making queries only in Q ∪ Q′ (where Q′ are the non-
frequent queries). Now, sample s elements {(ri,Qi)}i∈[s] from Rα uniformly at
random.

4. Output (r1, . . . , rs) and (Q,Q1, . . . ,Qs).

Given a sample (r1, . . . , rs) and (Q,Q1, . . . ,Qs), the distribution of oracles will
be random oracles whose queries in (Q,Q1, . . . ,Qs) are fixed and set to be random
on all other points. Such oracles were previously considered in [18] and referred to as
partially-fixed random oracles. The malicious verifier V∗ is specified as a PPT algo-
rithm that takes as auxiliary information (r1, . . . , rs) and proceeds as follows. For the
first message, it runs V(x; r1) and outputs whatever V does, say α. Given a second
message β sent by the prover V∗ applies a poly-wise independent hash function (also
supplied as auxiliary information) h(β) to a chosen index i ∈ [s]. Then it runs V(x; ri)
on the partial transcript α, β to output the third message δ and forwards that to the
prover. Any oracle query made by V is forwarded to the oracle attached to V∗.

Proving P1 follows essentially the same way as in [16]. So we argue P2 next.

Proving P2. Just as in [16], we will show that if the simulator can simulate V∗ on a false
statement with non-negligible probability, then there exists a cheating prover P∗ that
can break the soundness of the zero-knowledge argument, which, in turn, establishes
the property P2 specified at the beginning of the outline. As before, in the security
reduction, P∗ will internally emulate the simulator with V∗ and forward the message
from the external interaction inside, for one of the random rewindings made by the
simulator. Recall that P∗ and the external verifier are equipped with an oracle O (for
the one-way function).

Observe that P∗ will not be able to use O for internally emulating SV∗ , as in the
internal execution P∗ it needs to run S and V∗ from a prescribed distribution over
r1, . . . , rs and random oracles. By applying the same learning heavy-query algorithm
we can show that P∗ will be able to sampleQ,Q1, . . . ,Qs and r1, . . . , rs and an oracle
O′ where

– Q is consistent with O.
– O′ is consistent with Q∪Q1 ∪ · · · ∪ Qs and with O everywhere else.
– If O is sampled according to a random oracle, then the distribution of O′ and
r1, . . . , rs is identical to the prescribed distribution.

Next, if the random rewinding chosen by P∗ is the one that the simulator outputs as
an accepting transcript, then we want to conclude that P∗ succeeds in convincing the
external verifier. There are two (related) issues to make this argument work:

– First, forwarding the messages from the external verifier internally in a random
rewinding session could result in skewing the distribution internally simulated by
P∗.

7

– Second, the external oracle O and the internally emulated oracle O′ are not identi-
cal. In particular, they could be different on Q1, . . . ,Qs.

We argue that the first item is not an issue and the distribution is, in fact, correct
because we can view the random tape and queries made by the outside verifier as one of
the elements in Rα. The second issue is problematic because if the messages generated
by the simulator in the forwarded session makes the external verifier make one of the
conflicting queries (namely a query on Q1 ∪ · · · ∪ Qs), then we cannot claim that the
external verifier will accept if the internal emulation results in an accepting transcript
on that session. To resolve this issue, we weaken property P2 as follows:

P2’ On a false statement x, SO,V∗O(x,r1,...,rs) outputs an accepting transcript while not
making conflicting queries with negligible probability. In particular, if a particular
rewinding session (where rj was used as the random tape) is the accepting tran-
script then the verifier on that transcript should not make any query toQi for i 6= j.

This modification will be the crux of making our MA proof system work.

MA proof system. Upon receiving r1, . . . , rs,Q,Q1, . . . ,Qs, Arthur continues as fol-
lows:

1. Emulate SO,VO(x;r) where r is chosen at random and O according to the random
oracle. If it does not output an accepting transcript, then accept and halt. Otherwise
proceed.

2. Pick a random i ← [s] and emulate SO,VO(x;ri) where O is sampled according to
a partially fixed random oracle, fixed on the setQ∪Q1 ∪ · · · ∪Qs. If it either does
not output an accepting transcript or outputs an accepting transcript with conflicting
queries, then reject and halt. Otherwise, proceed.

3. Emulate SO,V∗O(x,r1,...,rs). If it either does not output a transcript or an accepting
transcript is output with conflicting queries then accept. Otherwise, reject.

2 Preliminaries

Basic notations. We denote the security parameter by n. We say that a function µ : N→
N is negligible if for every positive polynomial p(·) and all sufficiently large n it holds
that µ(n) < 1

p(n) . We use the abbreviation PPT to denote probabilistic polynomial-
time. We further denote by a← A the random sampling of a from a distribution A, and
by [n] the set of elements {1, . . . , n}. For an NP relation R, we denote by Rx the set
of witnesses of x and by LR its associated language. That is, Rx = {ω | (x, ω) ∈ R}
and LR = {x | ∃ ω s.t. (x, ω) ∈ R}. We specify next the definition of computationally
indistinguishable.

Definition 21 Let X = {X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N be
two distribution ensembles. We say that X and Y are computationally indistinguish-
able, denoted X

c
≈ Y , if for every PPT machine D, every a ∈ {0, 1}∗, every positive

polynomial p(·) and all sufficiently large n:∣∣Pr [D(X(a, n), 1n, a) = 1]− Pr [D(Y (a, n), 1n, a) = 1]
∣∣ < 1

p(n)
.

8

We assume familiarity with the basic notions of an Interactive Turing Machine (ITM
for brevity) and a protocol (in essence a pair of ITMs). We denote by PPT the class of
probabilistic polynomial-time Turing machines. We denote by M• an oracle machine;
we sometimes drop • when it is clear from the context. As usual, if M• is an oracle
machine, MO denotes the joint execution of M with oracle access to O.

Definition 22 (Random Oracle) A random oracle RO is a randomized stateful oracle
that given a query x← {0, 1}n outputs y if the pair (x, y) is stored or outputs a random
element y′ from {0, 1}|x| and stores (x, y′).

Following [4,18], we use randomized oracles as opposed to fixing a random oracle by
sampling it once as in [14] as this is sufficient for refuting black-box constructions.

We recall the properties of the “heavy-query” learning algorithm (verbatim) from
[2] that have typically been used in separation from one-way functions [14,18].

Lemma 21 (Learning Heavy Queries Efficiently [2]) Let A be a randomized oracle
algorithm which asks up to m oracle queries, denoted by Q(AO) and outputs some
message C. Let 0 < ε < 1 be a given parameter. There is a learning algorithm G
in PSPACE (in fact, BPPNP) which learns a list of Y of query-answer pairs from the
oracle O such that:

1. |Y| ≤ 10m/ε2.
2. With probability at least 1− ε over the choice ofO from RO and the random coins

of A and G, for every u that is not part of any query-answer pair in Y ,it holds
that Pr[u ∈ Q(A)|(C,Y)] < ε where the latter probability is over the remaining
randomness of RO and A conditioned on (C,Y).

Next, we recall the property about random oracles that they cannot be inverted by
any oracle algorithm (possibly unbounded) that makes only polynomially many queries
to the oracle. The following is repeated verbatim from [18].

Definition 23 (Security Threshold) A primitive P has security threshold τP if an ad-
versary “breaking” P has to “win” in the security game of P with probability τP + ε
for a non-negligible ε.

Lemma 22 ([2,18]) Let P and Q be two cryptographic primitives and P has security
threshold zero. For a randomized oracle O, suppose one can break the black-box secu-
rity of any implementationQO ofQ with non-negligible probability and asking poly(n)
oracle queries to O. Suppose also that there exists a black-box secure implementation
PO of P from O. Then there is no black-box construction of Q from P .

Definition 24 (Partially-Fixed Random Oracles) We call a randomized function f a
k(n)-partially-fixed random oracle if it is fixed over some sub-domain S and chooses
its answers similarly to the random oracle RO at any point q out of S and it holds
that |S ∩ {0, 1}n| ≤ k(n) for every n. We simply call f partially-fixed random if it is
2o(n)-partially-fixed random.

Lemma 23 ([18]) One-way functions can be black-box securely realized from all partially-
fixed random oracles.

9

2.1 Fully Black-box Constructions

Following the terminology of [22], we consider fully black-box constructions of zero-
knowledge arguments from the underlying primitive.

Definition 25 (Fully black-box construction) A black-box implementation of a prim-
itiveQ from a primitive P is an oracle algorithm Q (referred to as the implementation)
such that QP is an implementation of Q whenever P is an implementation of P . QP is
said to have a black-box proof of security, if there exists an efficient machineR such that
for any oracle P implementing P and machine A that breaks QP with non-negligible
advantage for some security parameter n, then RP,A breaks the security of P over
some security parameter n′ = poly(n). A black-box construction Q from P requires a
black-box implementation Q and a black-box proof of securityR.

2.2 Interactive Systems

We denote by 〈A(ω), B(z)〉(x) the random variable representing the (local) output of
machine B when interacting with machine A on common input x, when the random-
input to each machine is uniformly and independently chosen, and A (resp., B) has
auxiliary input ω (resp., z).

A round of an interactive proof system consists of a message sent from one party
to the other, and we assume that the prover and the verifier speak in alternating rounds.
Following [1], we let MA denote the class of languages having a 1-round proof system
and in this case refer to the prover as Merlin and the verifier as Arthur; that is:

Definition 26 (MA) L ∈ MA if there exists a probabilistic polynomial-time verifier
V , a non-negative function s, and a polynomial p such that the following hold for all
sufficiently-long x:

– If x ∈ L then there exists a string w (that can be sent by Merlin) such that

Pr[V(x,w) = 1] ≥ s(|x|) + 1/p(|x|).

– If x /∈ L then for all w (sent by a cheating Merlin) it holds that

Pr[V(x,w) = 1] ≤ s(|x|).

Definition 27 (Interactive argument system) A pair of PPT interactive machines
(P,V) is called an interactive proof system for a language L if there exists a negli-
gible function µ(·) such that the following two conditions hold:

1. COMPLETENESS: For every x ∈ L there exists a string ω such that for every
z ∈ {0, 1}∗,

Pr[〈P(ω),V(z)〉(x) = 1] ≥ c(|x|)
where c is the acceptance probability.

2. SOUNDNESS: For every x /∈ L, every interactive PPT machine P∗, and every
ω, z ∈ {0, 1}∗

Pr[〈P∗(ω),V(z)〉(x) = 1] ≤ s(|x|).
where s is the soundness error and will be negligible in this paper.

10

Definition 28 (Computational zero-knowledge (CZK)) Let (P,V) be an interactive
proof system for some languageL. We say that (P,V) is a computational zero-knowledge
with respect to an auxiliary input if for every PPT interactive machine V∗ there exists
a PPT algorithm S, running in time polynomial in the length of its first input, such that

{〈P(ω),V∗(z)〉(x)}x∈L,ω∈Rx,z∈{0,1}∗
c
≈ {〈S〉(x, z)}x∈L,z∈{0,1}∗

(when the distinguishing gap is considered as a function of |x|). Specifically, the left
term denotes the output of V∗ after it interacts with P on common input x whereas, the
right term denotes the output of S on x.

Black-Box Construction of Zero-Knowledge Arguments

Definition 29 A black-box construction of a zero-knowledge argument system for a
language L from one-way functions is a tuple of oracle algorithms (P,V,S) such that
for any oracle f = {fm : {0, 1}m → {0, 1}m}, P,V and S are oracle algorithms
where completeness holds w.r.t to any oracle O and the soundness and zero-knowledge
property are proved via a reduction to the underlying function f as follows:

Soundness: There is an efficient oracle reduction algorithm Rs, such that for every
oracle f , every malicious prover P∗ (that could arbitrarily depend on f), if P∗
convinces the verifier on input x ∈ {0, 1}n\L with probability 1/p(n) for some
polynomial p(·), Rf,P∗fs inverts f with probability 1/q(m) for some polynomial
q(·) over a polynomially related m = nθ(1), namely,

Pr[y ← f(Um) : Rf,P
∗f

s (y) ∈ f−1(y)] ≥ 1

q(m)

Zero Knowledge: This is defined analogously to the soundness property. There is an
efficient oracle reduction algorithm Rzk, such that for every oracle f , every mali-
cious verifier V∗ (that could arbitrarily depend on f), if V∗ distinguishes the real
execution from the simulation on input x ∈ L ∩ {0, 1}n with probability 1

p(n) for

some polynomial p(·), Rf,V
∗f

zk inverts f with probability 1/q(m) for some polyno-
mial q(·) over a polynomially related m = nθ(1), namely,

Pr[y ← f(Um) : Rf,V
∗f

zk (y) ∈ f−1(y)] ≥ 1

q(m)

We remark that, by view of the verifier we include the transcript of the messages, random
tape and the query and answers obtained by the verifier from its oracle.

Terminology. We will be concerned with 4-round CZK argument systems, where the
verifier sends the first message and the prover sends the final message. We use α, β, γ, δ
to denote the first, second, third, and fourth messages, respectively. We let P (resp., V)
denote the honest prover (resp., honest verifier) algorithm when the common input is x.

11

3 Implausibility of 4-Round BB ZK Arguments from OWFs

We begin with an outline of the proof. Recall that any separation cannot rule out the
existence of 4-round arguments with a random oracle, as a random oracle with high
probability acts as a “one-way permutation” and we do know 4-round arguments based
on one-way permutations [13,17]. Instead, we follow the approach of [18], by consid-
ering partially-fixed random oracles that crucially rely on the fact that the distribution
of oracles is not a permutation. A partially fixed random oracle behaves essentially as
a random oracle with the exception that for a pre-specified subset F of its domain the
answers are fixed.

3.1 Main Result

We are ready to prove our main result.

Theorem 31 If L has a fully black-box construction of 4-round computational zero-
knowledge argument for L with negligible soundness based on one-way functions, then
L ∈ MA.

Proof. Assume for contradiction, there is a fully black-box construction of a 4-round
ZK argument (P,V) from a one-way function with black-box simulator S.

In the proof system, Merlin (namely, the prover) and Arthur (namely, the verifier)
share in advance an input x of length n. Let c(·) be the completeness of 〈P,V〉. The
soundness of 〈P,V〉 is negligible. Let Ts(n) be a bound on the expected running time
of the simulator. Let m(n) be the total number of queries made by the prover and the
verifier on inputs of length n. Let Tv(n) be a bound on the runtime of the honest verifier.
Let η(n) denote the length of the prover’s second message. We set ε(n) = c(n)/20, and
s′(n) = 4(Ts(n))

2(ε)−3. For sake of succinctness, we define m = m(n), c = c(n),
T = Ts(n), ` = Tv(n), η = η(n), ε = ε(n) and s = s′(n). Finally, let S̃ be the
algorithm that proceeds identically to S with the exception that it halts after 2T/ε steps
on inputs of length n.

We will first describe a distribution of a malicious verifier V∗ and oracles O and
then describe and analyze the MA proof system.

Specifying the distribution of malicious verifier and the oracle.

1. Run VO(x; r) where we emulate O as a random oracle and choose the verifier’s
random tape uniformly at random. Let α be the message output by V . Discard r
and the oracle O.

2. Consider the oracle PPT algorithm A that on random tape (r, r′) outputs what
S•,V•(x;r)(x; r′) outputs. We execute the heavy-query learning procedure for the
algorithm A from Lemma 21 with parameter ε

(2s2·`) subject to the condition that
the output contains the view of the verifier where the first message generated by V
is α. Let Q be the set of queries output by this procedure.

3. Let Rα be the set that contains all the pairs (r′,Q′) such that V(x; r′) outputs α as
its first message while only making oracle queries inside Q ∪ Q′. Now sample s
elements {(ri,Qi)}i∈[s] from Rα uniformly at random.

12

4. Output (r1, . . . , rs) and (Q,Q1, . . . ,Qs).

Description of a malicious verifier strategy V∗: Given r1, . . . , rs from the distribution
above, we consider an oracle PPT algorithm V∗, that given an input x and auxiliary
input r1, . . . , rs, h, where ri represents random coins for the honest verifier algorithm
and h is a hash function, proceeds as follows:

1. V∗ internally emulates the honest verifier oracle algorithm V on input x and random
tape r1 to generate its first message α which it forwards externally to the prover. If
at any point during the emulation, V makes a query to its oracle, V∗ forwards that
query to its oracle and the response back to V .

2. Upon receiving a message β from the prover, the verifier computes i = h(β) and
emulates V on input x with random tape ri. It obtains α as V’s first message and
feeds β as the prover’s message. It then obtains γ as the third message and V∗
forwards γ to the external prover.

3. V∗ receives the last message δ from the prover. Finally, V∗ outputs its view.

Description of the family of oracles. Given Q,Q1, . . . ,Qs, we consider a partially-
fixed random oracle Õ that is defined as follows. It contains oracles that are fixed over
the queries inQ∪Q1∪ . . .∪Qs and chooses its answers similarly to the random oracle
RO at any point q not in the subdomain defined byQ∪Q1 ∪ . . .∪Qs. We remark that
such a family is well defined only if no two sets amongQ,Q1, . . . ,Qs have conflicting
queries, where a query u is conflicting for query-answer sets A and B, if there exists
v1, v2 (possibly equal) such that (u, v1) ∈ A and (u, v2) ∈ B. Looking ahead, by
the properties of the learning algorithm employed in the sampling procedure described
above, we will have that there will be no conflicting queries with high probability.

Before proceeding with the proof we introduce some notation, borrowed verbatim
from [16]. For a given randomized experiment Expt that can be run in polynomial-
time and outputs a bit, we let Estimateε(Pr[Expt]) denote a procedure that outputs an
estimate to the given probability (taken over randomness used in the Expt) to within an
additive factor of ε, except with probability at most ε. That is:

|Pr
[
Estimateε(Pr[Expt = 1])− Pr[Expt = 1]| ≥ ε

]
≤ ε.

This can be done in the standard way using Θ(ε−2 log 1
ε) independent executions of

Expt. Observe that if ε is non-negligible then the estimation runs in polynomial time
whenever Expt is a polynomial-time sampleable.

Description of the MA proof system: We are now ready to describe an MA proof for
L. On input x, Arthur proceeds as follows:

1. Upon receiving Merlin’s first message, Arthur interprets the message as strings
r1, . . . , rs ∈ {0, 1}` and sets of query-answer pairs Q,Q1, . . . ,Qs. Next, it pro-
ceeds as follows:
(a) Estimate the probability:

p1 = Estimateε

(
Pr

r′,r,O

[
S̃O,V

O(x;r′)(x; r) outputs an accepting transcript
])

13

where r and r′ are chosen uniformly at random from {0, 1}T and {0, 1}` re-
spectively, and O is sampled according to RO. We remark that the estimation
procedure requires sampling a random execution of S̃O,VO(x;r′)(x; r) and this
can be done in polynomial time by emulatingO distributed according to a ran-
dom oracle RO. If p1 < c−2ε then accept and halt. Otherwise, proceed to the
next step.

(b) If any pair of the sets Q,Q1, . . . ,Qs have conflicting queries then reject and
halt. Else, emulate the honest verifier algorithm V on input x and random tape
r1 until it generates its first message α. In this emulation, if V makes a query
inside Q ∪ Q1 we respond with the corresponding answer from the set. If V
makes a query outsideQ∪Q1, then Arthur rejects. For every i ∈ [s], internally
emulate V(x; ri) and reject if it does not output the same α as its first message
or makes a query outside Q∪Qi.

(c) Denote by Õ the distribution of partially-fixed random oracles fixed on the set
Q ∪ Q1 ∪ · · · ∪ Qs. Let E(v) denote the event when a view v of the veri-
fier is consistent with V(x; ri) for some i ∈ [s] and contains no query from
Qj for any j 6= i (where consistent with V(x; ri) means that transcript in v
can be regenerated when the prover messages in v are fed to the honest veri-
fier’s code on input x and randomness ri). Pick a random i ∈ [s] and emulate
S̃O,VO(x;ri)(x; r) where the oracle O is emulated according to Õ. Such an or-
acle can be emulated by answering all queries in the fixed set according to the
query-answer pair and any other query randomly (but consistently). If either S̃
does not output an accepting transcript or E(v) does not hold for the view v

output by S̃, then reject.
(d) Let H denote a family of 2T/ε-wise independent hash function h : {0, 1}η →
{1, . . . , s}. We next estimate:

p2 =

Estimateε

(
Pr
r,h,O

[
v ← S̃O,V

∗O(x,r1,...,rs,h)(x; r) : v is accepting ∧ E(v)
])

,

where r ← {0, 1}T , h ← H and O ← Õ. If p2 < c − 10ε accept, otherwise
reject.

We now proceed to proving the completeness and soundness arguments of the above
proof.

Lemma 31 For any x 6∈ L∩{0, 1}n and sufficiently large n, and any message r1, . . . , rs,
Q,Q1, . . . ,Qs sent by Merlin, the probability that Arthur accepts is at most c− 6ε.

Proof: In this case, we have x ∈ L, so it must hold that for any oracle O that the
probability with which the honest prover convinces the honest verifier on input x and
oracle O is at least c. From the zero-knowledge property we have that, for sufficiently
large n, x ∈ {0, 1}n ∩ L, we have

Pr
r,r′,O

[
S̃O,V

O(x;r′)(x; r) outputs an accepting transcript
]
≥ c− ε

14

This means that with probability at most ε, the estimate p1 obtained by Arthur will be
smaller than c − 2ε. In other words, Arthur accepts the statement with probability at
most ε in Step 1a.

Next recall that if the message sent by Merlin does not meet the conditions in
Step 1b, then it rejects. Thus we will assume that these conditions hold. Now consider
the following probability

p̂ = Pr
i,r,h,O

[
v ← S̃O,V

O(x;ri)(x; r) : v is accepting ∧ E(v)
]

where i ← [s], r ← {0, 1}T , h ← H and O ← Õ. Recall that if p2 < c − 10ε then
Arthur accepts, and otherwise rejects. There are two cases depending on p̂.

Case p̂ < c− 7ε: Recall that, in Step 1c, Arthur picks a random i, emulates S̃O,VO(x;ri)(x; r)
and rejects if the simulator does not output an accepting transcript. Therefore, in
this case, the probability with which Arthur accepts is at most the probability that
Arthur proceeds beyond Step 1c which is at most c− 7ε.

Case p̂ ≥ c− 7ε: In this case, by the zero-knowledge property, we have that the prob-
ability that the honest prover convinces the verifier with O and E does not occur,
is at least c− 8ε. In other words,

Pr
i,O

[
v ← ViewV(〈PO,VO(ri)〉(x)) : v is accepting ∧ E(v)

]
≥ c− 8ε.

where i ← [s] and O ← Õ. Recall that Õ is partially-fixed random oracle fixed
over a polynomial-sized subdomain and from Lemma 23 (as shown in [18]) we
know it implies one-way functions. We remark that here we rely on the fact that the
zero-knowledge property holds w.r.t such one-way functions.
By our construction of V∗ and 2T/ε-wise independence of H , it holds that

Pr
h,O

[
v ← ViewV∗(〈PO,V∗O(r1, . . . , rs, h)〉(x) : v is accepting ∧ E(v)

]
= Pr
i,O

[
v ← ViewV(〈PO,VO(ri)〉(x)) : v is accepting ∧ E(v)

]
where i← [s], h← H and O ← Õ.
Using the zero-knowledge property again, but, with V∗ this time we have that

Pr
r,h,O

[
v ← S̃O,V

∗O(x,r1,...,rs,h)(x; r) : v is accepting ∧ E(v)
]
≥ c− 9ε

where r ← {0, 1}T , h ← H and O ← Õ. This means that the probability with
which Arthur accepts in Step 1d is at most ε.

Overall, the probability with which Arthur accepts is at most ε+max{c−7ε, ε} = c−6ε
and this concludes the proof of the lemma. �

Lemma 32 For any x ∈ L ∩ {0, 1}n and sufficiently large n, there is a strategy for
Merlin that makes Arthur accept with probability is at least c− 5ε.

15

Proof: We first define Merlin’s strategy. Merlin will internally maintain the state of
an oracle O that is sampled according to RO. It chooses r̃ ← {0, 1}` uniformly at
random and emulates VO(x; r̃) and computes the verifier’s first message α. Next, it
runs the simulator with the honest verifier and tries to learn all the heavy queries made
by the algorithm S̃•,V•(x;r′)(x; r) subject to the verifier’s first message being α and
the oracle being O where the learning parameter is set to ε

(2s2·`) . Let Q be the set of
the queries that Merlin learns. Let Rα be the set that contains all the pairs (r′,Q′)
such that VQ∪Q′(x; r′) outputs α as its first message. Then Merlin samples s elements
{(ri,Qi)}i∈[s] from Rα uniformly at random and sends r1, . . . , rs,Q,Q1, . . . ,Qs to
the Arthur.

We now proceed to analyze the probability Arthur accepts. Recall that in Step 1a,
Arthur accepts if the estimate p1 < c− 2ε. Let

p̂ = Pr
r,r′,O

[
S̃O,V

O(x;r′)(x; r) outputs an accepting transcript
]

where r ← {0, 1}T , r′ ← {0, 1}`, O ← RO. We consider two cases:

Case p̂ < c− 3ε: In this case, by our estimation algorithm, we have that except with
probability ε, Arthur will accept at the end of Step 1a.

Case p̂ ≥ c− 3ε: In this case, we consider Step 1b, where Arthur checks if there are no
conflicting queries. Since Merlin honestly samples from the right distribution, we
have that for each i ∈ [s], the Verifier V outputs α with random tape ri while mak-
ing queries only inQ∪Qi whereQ andQi dont have any conflicting queries. Sec-
ond, it follows from the properties of the learning algorithm as stated in Lemma 21
and the parameters that was set, that the probability that any query from Qi occurs
in Qj for j 6= i with probability at most ε

(2s2·`) . Using a union bound we have
that the probability that some two sets in Q1, . . . ,Qs have conflicting queries can
be bounded by s × (|Qi| × s × ε

2s2·`) <
ε
2 . Therefore, the probability that Arthur

rejects in Step 1b is at most ε2 .
In Step 1c, Arthur emulates S̃O,VO(x;ri) for a randomly chosen i and aborts if it
either does not output a transcript or the E(v) holds for the view output by the
simulator.
First, we observe that, from Merlin’s algorithm, the following two distributions are
identical:

– {S̃O,VO(x;ri)(x; r)} where r1, . . . , rs,Q,Q1, . . . ,Qs are sampled according
to Merlin’s algorithm, i← [s], O ← Õ, r ← {0, 1}T

– {S̃O,VO(x;r′)(x; r)} where r ← {0, 1}T , r′ ← {0, 1}`, and O ← RO
This implies that

Pr
i,r,O

[v ← S̃O,V
O(x;ri)(x; r) : v is accepting] = p̂

where r1, . . . , rs,Q,Q1, . . . ,Qs are sampled according to Merlin’s algorithm, i←
[s], O ← Õ, r ← {0, 1}T .
Next, we compute the probability E(v) holds, namely, the probability S̃O,VO(x;ri)

makes no query in Qj for j 6= i. From Lemma 21, we have that each query in Qj

16

could occur in an emulation of S̃O,VO(x;ri)(x; r) with probability at most ε
(2s2·`) .

Therefore, applying a union bound, we have that the probabilityE(v) does not hold
is at most ε

(2s2·`) · | ∪j∈[s]/i Qj | <
ε
2 .

This means that the probability with which Arthur rejects in Steps 1b or 1c is at
most 1− p̂+ ε

2 + ε
2 ≤ 1− c+ 3ε+ ε = 1− c+ 4ε.

Next, we compute the probability with which it rejects in Step 1d. Recall that, this
happens if the final estimate exceeds c − 10ε. We will show that the real proba-
bility is at most c − 11ε, which means the estimate fails with probability at most
ε and Arthur therefore rejects with probability at most ε. This means the overall
probability Arthur rejects in this case is at most 1 − c + 4ε + ε = 1 − c + 5ε.
Therefore, Arthur accepts with probability at least c − 5ε and concludes the proof
of the Lemma.
It only remains to show that

Pr
[
v ← S̃O,V

∗O(x,r1,...,rs,h)(x; r) : v is accepting ∧ E(v)
]
< c− 11ε (1)

where r1, . . . , rs,Q,Q1, . . . ,Qs is sampled according to Merlin’s algorithm, r ←
{0, 1}T , h ← H and O ← Õ. In fact, we will show this is at most ε which is less
than c− 11ε as ε was chosen to be less than c/20.
First, we consider the event coll if in the simulation by S̃ for two different rewind-
ings (α, βi) and (α, βj) it holds that h(βi) = h(βj). Since S̃ makes at most s
queries and H is a family of 2T/ε-wise independent hash functions, we have

Pr[coll] <

(
2T/ε

2

)
· 1
s
< (2T/ε)2/(2s) = ε/2.

where the last equality follows from the fact that s = 4T 2/ε3. We can now upper
bound the probability in Equation 1 by

Pr
[
v ← S̃O,V

∗O(x,r1,...,rs,h)(x; r) : v is accepting ∧ E(v)|coll
]
+ Pr[coll]

Next, we will show that the probability of the first term in the above expression is at
most ε/2. Then we can conclude the proof of completeness as it implies Equation 1.
More formally we prove the following claim.

Claim 33

Pr
[
v ← S̃O,V

∗O(x,r1,...,rs,h)(x; r) : v is accepting ∧ E(v)|coll
]
<
ε

2

Proof: We begin by defining,

Pr
[
v ← S̃O,V

∗O(x,r1,...,rs,h)(x; r) : v is accepting ∧ E(v)|coll
]
= µ

where the probability is over r1, . . . , rs,Q,Q1, . . . ,Qs are sampled according to
Merlin’s algorithm, r ← {0, 1}T , h← H and O ← Õ.
On a high-level, we will construct a cheating unbounded prover P∗ that makes
at most polynomially many queries to the oracle and convinces an honest verifier

17

with probability at least µT when the oracle is sampled according to RO. Since we
have a black-box reduction from a cheating prover to inverting the oracle, we have
from Lemma 22 and Lemma 23 that µ

T must be negligible. This means that for
sufficiently large n, it will be at most ε2 and concludes the proof of the Claim.
We now proceed to describe our malicious prover P∗. On input x, P∗ proceeds as
follows:
1. P∗ will internally begin an emulation of S̃ with V∗. Externally P∗ interacts

with the honest verifier. Both P∗ and the external verifier are equipped with an
oracle O.

2. Upon receiving the first messageα from the external verifier,P∗ uses a PSPACE
algorithm to learn all the heavy queries made by the algorithm S̃•,V•(x;r′)(x; r)
conditioned on the verifier’s first message in the transcript output being α
where P∗ uses its oracle O to learn the responses of the heavy queries. Let
Q be the set of queries P∗ learns.

3. Next, using a PSPACE algorithm it samples ri,Qi for i ∈ [s] from Rα similar
to Merlin’s algorithm. Namely, it samples t views for V from the distribution
where it outputs α as its first message and oracle queries are consistent with
Q. Let ri be the verifier’s random tape andQi be the query-answer pairs made
in this view. By construction, we have that Q is consistent with the oracle O,
however, Qi might not be consistent with O.

4. Next, P∗ continues the emulation of S̃ where it feeds α as V∗’s first mes-
sage and internally emulates a random oracle O′ which answers according to
Q1 ∪ · · · ∪ Qs for the queries in this set of query-answer pairs and according
toO otherwise. P∗ picks a random index j from [s] to forward the external ex-
ecution internally in the jth rewinding session. More precisely, in the internal
emulation, P∗ follows V∗ strategy of selecting i = h(β) and using ri to gen-
erate the third message in all rewindings except the jth rewinding. In the jth

rewinding, it sends β externally to V and the forwards γ received from V in-
ternally in that rewinding. If S̃ concludes its simulation outputting a transcript
that does not corresponds to the jth rewinding, then P∗ halts. Otherwise, P∗
takes the fourth message δ generated in that rewinding session and forwards
externally to V .

We will now argue that the probability with which P∗ succeeds is at least µ/T .
1. Recall that, each of (ri,Qi) were uniformly sampled from Rα. Let r′ be the

external verifier’s random tape andQ′ be the set of query-answer pairs made to
generate α. By construction, we have that (r′,Q′/Q) is an element ofRα. This
means that, unless the event coll occurs (i.e. for some two rewinding sessions
i and i′, we have h(βi) = h(βi′)), the distribution of V∗’s messages emulated
internally by P ∗ is identically distributed to

{S̃O
′,V∗O

′
(x,r1,...,rs,h)}

where r1, . . . , rs,Q,Q1, . . . ,Qs sampled according to Merlin’s algorithm and
oracle O′ is according to the partially-fixed random oracle fixed on Q ∪Q1 ∪
· · · ∪ Qs. This means that the probability that the simulator outputs the jth

rewinding session as the accepting transcript is 1
T .

18

2. Whenever E(v) occurs, it means that on the accepting transcript the honest
verifier will not query anyQi for i 6= j. This means that the only queries made
by the verifier will be consistent with O.

Therefore, we have that, P∗ succeeds in convincing the external verifier with the
probability at least µ as long as its guess for the accepting session j is correct.
Therefore, the overall probability P∗ succeeds is at least µT . �

�

Acknowledgements. The first author is supported by the BIU Center for Research in
Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber
Bureau in the Prime Minister’s Office, and by ISF grant 1316/18. The second author is
supported in part by NSF Award SATC-1704788, NSF Award RI-1703846, and AFOSR
Award FA9550-18-1-0267, and in part by the Office of the Director of National Intel-
ligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via 2019-
19-020700006. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies, either ex-
pressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for governmental purposes notwithstand-
ing any copyright annotation therein. The third author is supported by Google Faculty
Research Grant and NSF Award CNS-1618884. The views expressed are those of the
authors and do not reflect the official policy or position of Google, the Department of
Defense, the National Science Foundation, or the U.S. Government.

References

1. Babai, L., Moran, S.: Arthur-merlin games: A randomized proof system, and a hierarchy of
complexity classes. J. Comput. Syst. Sci. 36(2), 254–276 (1988)

2. Barak, B., Mahmoody-Ghidary, M.: Lower bounds on signatures from symmetric primitives.
In: FOCS. pp. 680–688 (2007)

3. Bellare, M., Jakobsson, M., Yung, M.: Round-optimal zero-knowledge arguments based on
any one-way function. In: EUROCRYPT. pp. 280–305 (1997)

4. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient
protocols. In: CCS. pp. 62–73 (1993)

5. Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: A paradigm for keyless hash
functions. In: STOC (2018)

6. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In: CRYPTO.
pp. 526–544 (1989)

7. Fleischhacker, N., Goyal, V., Jain, A.: On the existence of three round zero-knowledge
proofs. In: EUROCRYPT. pp. 3–33 (2018)

8. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM
J. Comput. 25(1), 169–192 (1996)

9. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all
languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)

10. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J.
Cryptology 7(1), 1–32 (1994)

19

11. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof sys-
tems. SIAM J. Comput. 18(1), 186–208 (1989)

12. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any
one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

13. Hazay, C., Venkitasubramaniam, M.: Round-optimal fully black-box zero-knowledge argu-
ments from one-way permutations. In: TCC. pp. 263–285 (2018)

14. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations.
In: STOC. pp. 44–61 (1989)

15. Ishai, Y., Mahmoody, M., Sahai, A.: On efficient zero-knowledge pcps. In: Theory of Cryp-
tography - 9th Theory of Cryptography Conference, TCC 2012, Taormina, Sicily, Italy,
March 19-21, 2012. Proceedings. pp. 151–168 (2012)

16. Katz, J.: Which languages have 4-round zero-knowledge proofs? J. Cryptology 25(1), 41–56
(2012)

17. Khurana, D., Ostrovsky, R., Srinivasan, A.: Round optimal black-box ”commit-and-prove”.
In: TCC. pp. 286–313 (2018)

18. Mahmoody, M., Pass, R.: The curious case of non-interactive commitments - on the power
of black-box vs. non-black-box use of primitives. In: CRYPTO. pp. 701–718 (2012)

19. Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158 (1991)
20. Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party computation.

In: CRYPTO. pp. 339–358 (2015)
21. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way functions.

In: TCC. pp. 403–418 (2009)
22. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryptographic

primitives. In: TCC. pp. 1–20 (2004)

20

	Which Languages Have 4-Round Fully Black-Box Zero-Knowledge Arguments from One-Way Functions?

